/ /

  • linkedin
  • Increase Font
  • Sharebar

    Time-lapse photography and ART

    The technology may allow for easier selection of normal embryos and perhaps lead to eSET becoming the standard of care


    In 2011, 163,039 assisted reproductive technology (ART) cycles were performed in the United States, resulting in 47,818 live births and 61,610 live-born infants, according to the Centers for Disease Control and Prevention (CDC) 2011 Assisted Reproductive Technology Fertility Clinic Success Rates Report.1 Nearly 70% of the ART cycles thus did not result in a live birth, underscoring how difficult it is to select the right embryo.

    With demand for ART increasing, clinics will continue to feel financial pressure to improve the efficacy and efficiency of ART cycles. In a recent article by Chambers et al, the authors point out that “there are striking international differences in utilization of ART and embryo transfer (ET) practices, even among developed countries where the prevalence and causes of infertility are similar. The reasons for such disparities are multifactorial, and include the diversity of regulatory and funding environments, demographic differences, and the influence of sociocultural norms.”2

    Despite more than 30 years of research and an array of scientific innovations, we have yet to find the proverbial “Holy Grail” of IVF success: A way to definitively identify developmentally normal embryos. If clinicians/embryologists were able to pick the absolute “best” embryos, then elective single embryo transfer (eSET) would be the standard of care, decreasing the number of multifetal pregnancies and resultant complications. In fact, according to the CDC data cited above, multifetal pregnancies are a common occurrence.

    An old technology is ‘new’ again

    Now new hope for identifying normal embryos is coming from an old technology: time-lapse photography. Around since the early 20th century, time-lapse photography was first used by scientists who took continuous sequential photographs of plants and played back the images at a fast speed so that hours or days of change could be appreciated in a matter of seconds. We have all seen time-lapse images of flowers blooming, clouds moving, or even people going about their daily lives. What is miraculous about these short clips is that when they are played at normal speeds, time appears to be elapsing more quickly, allowing subtle changes to be identified and studied.

    Time-lapse photography applied to embryo development is commonly called morphokinetics because it combines the morphological criteria that are typically used for embryo grading/evaluation with the kinetics of development for each embryo at certain predefined checkpoints.

    Morphokinetics eliminates the need for an embryologist to take an embryo out of an incubator at set intervals and evaluate its development under a microscope. Instead, the embryo remains in a chamber, where images are continuously recorded and evaluated remotely.

    What piques our interest about time-lapse photography is the completely noninvasive nature of the technology. Time-lapse photography requires only a modified incubator system, an embryo, a camera, and a computer to process the images. Coupled with the many advances in ART labs in the past decade—such as improvements in embryo culture that allow embryos to grow longer and more robust, innovations in embryo biopsy techniques allowing clinicians to get better samples of genetic material, and the myriad other new technologies for enhanced genetic evaluation of an embryo—time-lapse photography could be a game-changer.

    Two companies currently manufacture time-lapse technology for embryo evaluation: Auxogyn and Unisense FertiliTech. Auxogyn’s product is the noninvasive Early Embryo Viability Assessment (Eeva) System. Unisense FertiliTech’s product is the EmbryoScope. Both technologies allow for simultaneous imaging of multiple embryos and remote access to data/images.


    Brian A. Levine, MD, MS, FACOG
    Dr. Levine is Practice Director at the Colorado Center for Reproductive Medicine, New York, New York.


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow