/ /

  • linkedin
  • Increase Font
  • Sharebar

    Product review: T'Lift and PKS BiLL





    Shortly after the initial reports of the first laparoscopic supracervical hysterectomies in the early 1990s, Dr. Jacques Dequesne of Switzerland described his experience with amputating the uterine fundus using a new electrosurgical loop called the LEC loop.1 This mostly improvised device consisted of a modified 10-cm piece of tungsten wire that could be wrapped around the cervical isthmus and grasped with metal-tipped forceps to allow a monopolar current to be passed through the wire for cutting purposes.1

    The first 30 procedures with the LEC went well and soon a new family of surgical devices was born with names like Lap Loop, LiNA Loop, and SupraLoop. These devices were variations of monopolar wires designed to divide the cervix, with each iteration introducing a slight improvement. In this loopty-loop world, everything seemed kind of the same … until BiLL came along.

    Design and functionality

    By most visual criteria, the resemblance between Olympus’s Bipolar Laparoscopic Loop (BiLL) and other surgical loops is uncanny. But appearances can be deceiving and similarities often belie enormous underlying differences. As with other loops, BiLL is a single-use, 5-mm device and its core component is a wire surrounded by an insulated introducer shaft that slides over the wire to expand and contract the loop’s diameter. However, unlike other loops, BiLL uses Olympus’s PK technology with its G400 generator and it is bipolar rather than monopolar. For readers who do not think this is a big deal, let’s review how this device works.

    After the broad ligaments have been divided, the bladder pushed caudad and the uterine vessels secured, the loop is passed over the uterine fundus and snared around the cervix at the level at which amputation is desired. The positioning of the loop is checked. The generator is activated while the loop is gradually contracted by pulling the top of the wire up while pushing down on the introducer shaft, thereby forcing the energized filament to slice through the tissues like a hot knife through butter. Knowing exactly the path your electrical current is traveling can be the difference between a 10-second cervical amputation and damage to the colon, iliac, or other nearby structures.

    In use in the OR, PKS BiLL performed just like every other laparoscopic cutting loop I have ever used: quickly, cleanly, and hemostatically. Maybe it was a tad slower and smokier than the monopolar loops I have tried. But, even if this was the case—and I am not sure it was—the peace of mind gained by using a bipolar device rather than a monopolar wire was well worth it. As far as loops go, I cannot envision a better one.



    Knowing that bipolar configurations generally confer a superior safety profile and seeing that every other loop product on the market is monopolar, I can only conclude that the engineering contortions needed to produce this device must not be too straightforward. As a committed bipolar-is-better-than-monopolar surgeon, I am very impressed with this technological “tweak” and I think it is huge advance for patient safety. This is a game-changer.



    I am not convinced that laparoscopic cutting loops in any configuration truly represent a great bang for our Affordable Care Act buck. They are all fast and save time, but as to value, I remain a skeptic. However, if you are a loop aficionado there is little doubt in my mind that Mr. BiLL is your man. Given the potential for injuries (and there is an impressive list of them with monopolar loops in the FDA’s Manufacturer and User Facility Device Experience [MAUDE] database: www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm), I cannot see why anyone would use a monopolar wire when a bipolar loop alternative is available. This one is a no-brainer.





    1. Dequesne D, Schmidt N, Frydman R. A new electrosurgical loop technique for laparoscopic supracervical hysterectomy. Gynaecol Endosc.


    The views of the author are personal opinions and do not necessarily represent the views of Contemporary OB/GYN. Dr. Greenberg personally tests all the products he reviews. He reports no conflicts of interest with these products or the companies that produce them. He reports receiving royalties from Hologic, consulting fees from Channell Med and Ethicon, and conducting contracted research for Mind Child, Inc.

    James Greenberg, MD
    Dr. Greenberg is Chief, Division of Gynecology, Brigham & Women’s Faulkner Hospital, and Associate Professor, Harvard Medical School, ...


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow