/ /

  • linkedin
  • Increase Font
  • Sharebar

    3D printing in gynecologic surgery planning


    What the future holds

    For select cases of deep infiltrating endometriosis affecting multiple organ systems (gynecologic, urinary, alimentary tracts), a multidisciplinary surgical team might find 3D modeling useful for patient-specific preoperative planning and for counseling a patient regarding the extent of surgical resection and need for stents or stoma, etc. Other potential applications for 3D printing in gynecologic surgery include myomectomies and surgery for certain Müllerian abnormalities. With tactile feedback a limitation of laparoscopic or robotic myomectomy, smaller fibroids might be inadvertently retained during these procedures. Three-dimensional models of the uterus with varying color and consistency might aid in a more thorough procedure. In addition, a tangible model in complex multiple myomectomy cases might inform the optimal location of hysterotomies, thereby limiting unnecessary and inefficient incisions. Women with Müllerian anomalies in whom a hysterectomy is indicated often undergo preoperative MRI as part of gynecologic and urologic system evaluation. Three-dimensional rendering of anomalies involving the lower uterine segment or cervix (didelphys, bicollis, complete septate uterus, cervical agenesis, etc.) might more precisely delineate the relationship of the uterine vasculature and ureters to the uterus.

    As enticing as it may be to use 3D printing for patient education, the current price of a model does not support that as the only indication for the technology. With continued innovation and evolution in the field of 3D printing, the cost of printers, and the process of image to model is expected to continue to decline to a more affordable level. As the paths of affordability and further research studies cross, clinical benefits of 3D printing in the field of gynecologic surgery may one day be clarified, making this exciting technology a new and permanent addition to the surgeon’s armamentarium.  

    Disclosures: The author reports no potential conflicts of interest with regard to this article.


    1. Donya M, Radford M, ElGuindy A, Firmin D, Yacoub MH. Radiation in medicine: Origins, risks and aspirations. Global Cardiol Sci Pract. 2014;2014(4):437-448.

    2. Scatliff JH, Morris PJ. From Röntgen to Magnetic Resonance Imaging. N C Med J. 2014;75(2):111-113.

    3. Hull C. Apparatus for production of three-dimensional object by stereolithography. US patent 4575330. 1986

    4. Meier LM, Meineri M, Qua Hiansen J, Horlick EM. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J. 2017;25(2):65-75.

    5. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng OnLine. 2016;15:115.

    6. Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardio-Thoracic Surg. 2014;47(6):1044-1052.

    7. Dickinson KJ, Matsumoto J, Cassivi SD, et al. Individualizing Management of Complex Esophageal Pathology Using Three-Dimensional Printed Models. Ann Thorac Surg. 2015;100(2):692-697.

    8. Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521-529.

    9. Thawani J, Randazzo M, Pisapia J, Singh N. 3D printing in neurosurgery: A systematic review. Surg Neurol Int. 2016;7(34):801.

    10. Rundstedt F-CV, Scovell JM, Agrawal S, Zaneveld J, Link RE. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int. 2016;119(4):598-604.

    11. Youssef RF, Spradling K, Yoon R, et al. Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697-702.

    12. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Frontiers Surg. 2015;2:25.

    13. Mulford J, MacKay N, Babazadeh S. Three Dimensional Printing in Orthopaedic Surgery: A Review Of Current and Future Applications. Orthop J Sports Med. 2016;4(2 Suppl):2325967116S00022.

    14. Yoong W, Cresswell K, Moffatt J, Mead R, Laverick B, Szarko M. The application of 3D printing technology in obstetrics and gynaecology. Obstetrician Gynaecologist. 2015;17(1):3-4.

    15. Bartellas M, Ryan S, Doucet G, Murphy D, Turner J. Three-Dimensional Printing of a Hemorrhagic Cervical Cancer Model for Postgraduate Gynecological Training. Muacevic A, Adler JR, eds. Cureus. 2017;9(1):e950.

    16. Sayed Ahmad Zikri Bin Sayed Aluwee, Zhou X, Kato H, et al. Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol Phys Technol. December 2017.

    17. Ajao MO, Clark NV, Kelil T, Cohen SL, Einarsson JI. Case Report: Three-Dimensional Printed Model for Deep Infiltrating Endometriosis. J Minim Invasive Gynecol. 2017.

    Mobolaji Oluwaseun Ajao, MD
    Dr. Ajao is a Fellow in Minimally Invasive Gynecologic Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts.


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow