/ /

  • linkedin
  • Increase Font
  • Sharebar

    Imaging innovation in urogynecology

    Imaging aids understanding of conditions common in older women.





    Dr Hart is Chief Medical Officer of Innovation, USF Health Center for Advanced Medical Learning and Simulation (CAMLS), Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa. He reports receiving salary/honoraria and fees from Covidien and Boston Scientific, and performing contracted research for Cooper Surgical, Covidien, and Stryker.


    Pelvic floor disorders, including pelvic organ prolapse (POP) and incontinence, are very common conditions that can significantly affect a patient’s quality of life, and are especially challenging disorders for clinicians to predict and treat.

    Recommended: Vaginal delivery and the pelvic floor

    POP affects up to half of women older than age 50 years and is one of the most common indications for gynecologic surgery. More than 226,000 POP surgeries are performed annually in the United States, with direct costs exceeding $1 billion per year.1-3 The lifetime risk of a woman undergoing a surgery for POP or incontinence by the age of 80 years is 11%, although some estimates place it as high as 20%.4-7

    The number of surgeries for POP or incontinence, and the expense to our healthcare system as a result of pelvic floor disorders, will continue to rise because the elderly population is expected to increase to 50 million by 2019, while the number of women with POP is predicted to increase by 50% from 2010 to 2050.2,7,8 Thus, pelvic floor disorders have been called a hidden epidemic.9

    Female pelvic medicine and reconstructive surgery

    The field of female pelvic medicine and reconstructive surgery (FPMRS) has made great strides during the past several decades. Due to the significant complexity of pelvic floor conditions, experts specializing in this field have developed an increasingly advanced diagnostic and surgical skillset, and are more frequently using evolving technologies such as imaging in the diagnosis and treatment of these conditions. Despite the many advances made in FPMRS, our understanding remains limited of the pathophysiology that underlies pelvic floor conditions, including POP and incontinence.

    One of the most challenging aspects of the field is the high recurrence rate associated with currently available surgical procedures, especially for POP, with recurrence rates requiring reoperation reported as high as 29% in a community-based population.4,10-13 Studies have also shown that even our gold standard treatment for POP—sacrocolpopexy—may be less effective and associated with higher complication rates than previously thought.

    In a 7-year follow-up of the CARE trial (Colpopexy And urinary Reduction Efforts), in which patients underwent abdominal sacrocolpopexy, the estimated probabilities of treatment failure (POP, stress urinary incontinence, urinary incontinence) in the urethropexy and no urethropexy groups were 0.27 and 0.22, respectively, for anatomic POP, and 0.29 and 0.24 for symptomatic POP. This study also showed that complications related to synthetic mesh continue to occur over time at a rate that is likely higher than previously thought, with a 10.5% probability of mesh erosion at 7 years postsurgery.11

    A better understanding of the underlying causes of pelvic floor disorders is needed not only so that surgical treatment can be maximized to prevent recurrences, but also so that predictive models can be developed to determine which patients are at highest risk of developing these disorders so that preventative strategies can be implemented at an earlier stage of progression. Also, development of computational models capable of predicting surgical success and failure, through the use of patient-specific risk factors and diagnostic findings (examination and testing data), could completely change the surgical procedures we offer and ultimately improve outcomes.

    The article in this issue by Dr Lennox Hoyte and colleagues on levator ani injury during childbirth provides an overview of the current state of the evidence regarding childbirth injury to the levator ani muscles, the associated risk to the development of pelvic floor disorders and of surgical failure, and methods to possibly reduce the risk of these injuries. Much of this knowledge has been made possible through advances in pelvic floor imaging, which could also one day provide the data needed to create more accurate predictive models.

    NEXT: Pelvic floor imaging

    Stuart Hart, MD, MBA, MS, FACOG, FACS
    Dr Hart is Chief Medical Officer of Innovation, USF Health Center for Advanced Medical Learning and Simulation (CAMLS), Division of ...


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow