/ /

  • linkedin
  • Increase Font
  • Sharebar

    Sickle cell disease in pregnancy

    Pictured above: A microscopic view of sickled red blood cells causing anemia disease.

     

    Sickle cell disease (SCD) is a devastating abnormality of red blood cells (RBCs) that results in circulatory impairment, tissue damage, infarctions, severe anemia, and life-threatening infections. SCD affects between 70,000 and 100,000 Americans, mostly of African descent, with a minority of Hispanic, southern European, Middle Eastern, and Asian Indian descent. Today, SCD is most often discovered during routine newborn screening.

    Although SCD is associated with major morbidity, more than 90% of children with SCD in the United States survive into adulthood. Compared to the general population, however, their lifespans are 2 or 3 decades shorter and limited by both acute and chronic morbidity.

     

    Acute complications of SCD include ischemic, vaso-occlusive (pain) crises, acute chest syndrome (which most closely resembles pneumonia, but may also result from fat embolism from bone marrow, intrapulmonary aggregates of sickled cells, atelectasis, or pulmonary edema), stroke, splenic sequestration, acute renal failure, and cholecystitis. Chronic complications include chronic pain, cholelithiasis, renal dysfunction, hypertension, pulmonary hypertension, and retinal problems.1

    By the time they reach childbearing age, young women with SCD may have suffered many severe complications. Clinically apparent stroke occurs in 11% of those with SCD by age 20 and in 24% by age 45.2 Although the condition is not usually regarded as a thrombophilia, 25% of adults with SCD have experienced venous thromboembolism (VTE) by a median age of 30, which is comparable to the rate in adults with high-risk thrombophilias.3

    Available therapies

    The only established disease-modifying therapies are chronic transfusion and hydroxyurea. The latter is strongly recommended for adults with 3 or more severe vaso-occlusive crises per year, pain or chronic anemia interfering with daily activities, or severe or recurrent episodes of acute chest syndrome. Hydroxyurea therapy is also suggested for adolescents without regard to symptoms.

    Long-term transfusion therapy is used to prevent stroke in children with abnormal transcranial Doppler velocity. Potential consequences of long-term transfusion therapy are alloimmunization and iron overload. Because transfused blood contains iron that circumvents the normal pathways of iron regulation, excess iron can accumulate in tissues and can become pathological. Chelation therapy can be used to remove excess iron in patients with evidence of iron overload.1

    0 Comments

    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available

    Poll

    Latest Tweets Follow